Please enable javascript to access the full functionality of this site

Australia and South Korea: leveraging the strategic potential of cooperation in critical technologies

Submitted by markopetreski@… on Thu, 12/05/2024 - 14:42
2024-12-05 15_40_13-Australia and South Korea_ leveraging the strategic potential of cooperation in banner 1
Light
@ASPI_CTS

Australia and South Korea: leveraging the strategic potential of cooperation in critical technologies

Executive summary

Cooperation between Australia and the Republic of Korea (hereafter South Korea or the ROK) in a range of critical technology areas has grown rapidly in recent years. Underpinned by the Australia – South Korea Memorandum of Understanding (MoU) on Cyber and Critical Technology Cooperation signed in 2021, collaboration is currently centred around emerging technologies, including next-generation telecommunications, artificial intelligence (AI) and quantum computing. Such technologies are deemed to be critical due to their potential to enhance or threaten societies, economies and national security. Most are dual- or multi-use and have applications in a wide range of sectors.1

Intensifying geostrategic competition is threatening stability and prosperity in the Indo-Pacific region. Particularly alarming is competition in the technological domain. ASPI’s Critical Technology Tracker, a large data-driven project that now covers 64 critical technologies and focuses on high-impact research, reveals a stunning shift in research ‘technology leadership’ over the past two decades. Where the United States (US) led in 60 of the 64 technologies in the five years between 2003 and 2007, the US’s lead has decreased to seven technologies in the most recent five years (2019–2023). Instead, China now leads in 57 of those technologies.

Within the Indo-Pacific region, some countries have responded to those shifts in technology leadership through the introduction of policies aimed at building ‘technological sovereignty’. The restriction of high-risk vendors from critical infrastructure, the creation of sovereign industrial bases and supply-chain diversification are examples of this approach. But a sovereign approach doesn’t mean protectionism. Rather, many countries, including Australia and South Korea, are collaborating with like-minded regional partners to further their respective national interests and support regional resilience through a series of minilateral frameworks.

The Australia – South Korea technological relationship already benefits from strong foundations, but it’s increasingly important that both partners turn promise into reality. It would be beneficial for Australia and South Korea to leverage their respective strengths and ensure that collaboration evolves in a strategic manner. Both countries are leaders in research and development (R&D) related to science and technology (S&T) and are actively involved in international partnerships for standards-setting relating to AI and other technologies. Furthermore, both countries possess complementary industry sectors, as demonstrated through Australia’s critical-minerals development and existing space-launch capabilities on one hand, and South Korea’s domestic capacity for advanced manufacturing on the other.

This report examines four stages common to technological life cycles — (1) R&D and innovation; (2) building blocks for manufacturing; (3) testing and application; and (4) standards and norms. For each, we examine a specific critical technology of interest. Those four life-cycle areas and respective technologies—spanning biotechnologies-related R&D, manufacturing electric-battery materials, satellite launches and AI standards-setting—were chosen as each is a technology of focus for both countries. Furthermore, collaboration through these specific technological stages enables Australia and South Korea to leverage their existing strengths in a complementary manner (see Figure 1). Supporting the analysis of these four stages of the technological life cycle and selected critical technologies is data from ASPI’s Critical Technology Tracker and the Composite Science and Technology Innovation Index (COSTII) jointly released by South Korea’s Ministry of Science and ICT (MSIT) and the Korea Institute of Science & Technology Evaluation and Planning (KISTEP).

Informed by that examination, this report identifies a set of recommendations for strengthening cooperation that is relevant for different stakeholders, including government and industry.

Figure 1

Policy recommendations

Biotechnologies

Australia and South Korea can enhance knowledge-sharing in biotechnologies-related R&D through people-to-people exchanges. Links should be formalised through an MoU between relevant institutions—such as Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Korea Research Institute of Bioscience and Biotechnology. An MoU could be used to implement initiatives such as a virtual mentoring program and long-term in-person exchanges (preferably at least 12 months in duration). Such exchanges would support immersive in-country interaction, enabling the transfer of specialised R&D expertise. Australian researchers could share knowledge about advances in early-stage clinical trials processes, while South Korean researchers could contribute insights into synthetic biology and AI tools in drug-discovery clinical-trial methodologies. Financial support from Australia’s National Health and Medical Research Council could facilitate the exchanges.2 There remains a need to address visa constraints impeding the free flow of researchers between both countries. While this report focuses on R&D, we suggest that there’s equal value in considering cooperation in the manufacturing stages of the biotechnologies value chain.

Recommendation 1: Formalise links between Australia’s and South Korea’s key biotechnologies R&D institutions by facilitating long-term people-to-people exchanges aimed at transferring specialised expertise. This includes in areas such as clinical trials, synthetic biology and AI integration in biotechnologies.

Electric batteries

Australian companies should consider the production of battery materials, including lithium hydroxide and precursor cathode active materials (pCAM), through joint ventures with South Korean battery manufacturers. Such ventures would benefit from jointly funded and owned facilities geographically close to requisite critical minerals. Since spodumene is needed for lithium hydroxide and nickel, cobalt and manganese are required for pCAM, Western Australia provides the ideal location for those facilities. Furthermore, BHP’s recent suspension of its Western Australian nickel operations provides an ideal opportunity for a South Korean battery company to purchase those operations— securing nickel sulphate supplies necessary for pCAM manufacturing.3 There’s also the potential for South Korea to invest in cathode active manufacturing (CAM) manufacturing in Australia by taking advantage of the co-location of mining and pCAM operations.

The provision of loans with relatively low interest rates from South Korean Government–owned banks,4 as well as tax credits and energy incentives provided by the Australian Government, would assist in offsetting the relatively high operational costs (including for labour and materials) associated with establishing joint battery-material plants in Australia instead of South Korea.5 Environmental regulations will need careful consideration in assessing such proposals, such as those covering the disposal of by-products. In the case of sodium sulphate, that by-product can be used in fertilisers and even recycled for future use in battery-material manufacturing.6

Recommendation 2: Consider the establishment of facilities in Australia under joint venture arrangements between Australian and South Korean companies to enable expanded production of battery materials (including lithium hydroxide and pCAM).

Space and satellite technologies

Australia and South Korea should establish a government-to-government agreement that would facilitate the launch of South Korean satellites from northern and southern locations in Australia. This would be similar to the Australia–US Technologies Safeguard Agreement. The agreement would increase the ease with which companies from both countries can pursue joint launches by streamlining launch permit application processes, export controls, taxation requirements and environmental regulations. The agreement can establish a robust framework for joint operations and continued R&D in space and satellite technologies while ensuring that both countries protect associated sensitive technologies. Any such agreement should prioritise consultations with community stakeholders to further inclusive decision-making focused on addressing the social and environmental impacts of space launches.7 Engaging with Indigenous landowners to ensure the protection of cultural heritage, sacred sites and traditional land stewardship is particularly key.8

Recommendation 3: Establish a government-to-government agreement similar to the Australia–US Technologies Safeguard Agreement to bolster the ease with which Australian and South Korean companies can conduct joint satellite launches on Australian soil.

Artificial intelligence technologies

Closer collaboration between Standards Australia and the Korea Standards Association in establishing international AI standards will be beneficial. The established positive record of Australian and South Korean stakeholders in relation to international norms and standards relating to critical technologies, and comparative regional strengths, provide a means to ensure that international AI standards continue to evolve in a way that fosters interoperability, innovation, transparency, diversity and security-by-design. One recommended body through which Australian and South Korean stakeholders could coordinate their respective approaches is the international, industry-led multistakeholder joint subcommittee (SC) created by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) known as the ISO/IEC Joint Technical Committee 1 Subcommittee 42 on AI (ISO/IEC JTC 1/SC 42).

Recommendation 4: Coordinate the approach of Standards Australia and the Korea Standards Association in establishing international AI standards in international technology standards bodies, for example, through ISO/IEC JTC 1/SC 42.

Full Report

For the full report, please download here.

Australia and South Korea leveraging the strategic potential of cooperation in
Thu, 12/05/2024 - 14:39
markopetreski@…
Attachment
ADF

Australian Defence Force

ACSC

Australian Cyber Security Centre

IEC

the International Electrotechnical Commission

IEEE

Institute of Electrical and Electronics Engineers

IoT

Internet of Things

IoTAA

Internet of Things Alliance Australia

ISO

International Organisation for Standardization

USB

universal serial bus

IIOT

Industrial Internet of Things

ASD

Australian Signals Directorate

CCP

Chinese Communist Party

MERICS

Mercator Institute for China Studies

PRC

Peoples Republic of China

VPN

virtual private network

AI

Artificial Intelligence

SCS

Social Credit System

BRI

One Belt, One Road initiative

CETC

China Electronics Technology Group Corporation

NGO

nongovernment organisation

RFID

radio-frequency identification

CFIUS

Committee on Foreign Investment in the US

SVAIL

Silicon Valley Artificial Intelligence Laboratory

UTS

University of Technology Sydney

ATO

Australian Taxation Office

COAG

Council of Australian Governments

DHS

Department of Human Services

DTA

Digital Transformation Agency

FIS

Face Identification Service

FVS

Face Verification Service

TDIF

Trusted Digital Identity Framework

NUDT

National University of Defense Technology

PLAIEU

PLA Information Engineering University

RFEU

Rocket Force Engineering University

STEM

science, technology, engineering and mathematics

UNSW

University of New South Wales

ZISTI

Zhengzhou Information Science and Technology Institute

AFP

Australian Federal Police

ACIC

Australian Criminal Intelligence Commission

A4P

Action for Peacekeeping

ASEAN

Association of Southeast Asian Nations

C-34

Special Committee on Peacekeeping Operations

CTOAP

Peacekeeping Training Centre (Timor-Leste)

F-FDTL

Timor-Leste Defence Force

MFO

Multinational Force and Observers

MINUSCA

UN Multidimensional Integrated Stabilization Mission in the Central African Republic

MINUSMA

UN Multidimensional Integrated Stabilization Mission in Mali

MONUSCO

UN Stabilization Mission in the Democratic Republic of the Congo

PNGDF

Papua New Guinea Defence Force

PNTL

National Police of Timor-Leste

RAMSI

Regional Assistance Mission to Solomon Islands

RFMF

Republic of Fiji Military Forces

RPNGC

Royal Papua New Guinea Constabulary

RSIPF

Royal Solomon Islands Police Force

UNAMI

UN Assistance Mission for Iraq

UNAMID

UN–African Union Mission in Darfur

UNAMIR

UN Assistance Mission for Rwanda

UNAVEM

UN Angola Verification Mission

UNDOF

UN Disengagement Observer Force

UNIFIL

UN Interim Force in Lebanon

UNIKOM

UN Iraq–Kuwait Observation Mission

UNIOGBIS

UN Integrated Peacebuilding Office for Guinea-Bissau

UNISFA

UN Interim Security Force for Abyei

UNOSOM

UN Operation in Somalia

UNMHA

UN Mission to Support the Hodeidah Agreement

UNMIBH

UN Mission in Bosnia and Herzegovina

UNMIK

UN Interim Administration Mission in Kosovo

UNMIL

UN Mission in Liberia

UNMIS

UN Mission in Sudan

UNMISET

UN Mission of Support to East Timor

UNMISS

UN Mission in South Sudan

UNMIT

UN Integrated Mission in East Timor

UNOTIL

UN Office in East Timor

UNSMIS

UN Supervision Mission in Syria

UNTAC

UN Transitional Authority in Cambodia

UNTAES

UN Transitional Administration for Eastern Slavonia, Baranja and Western Sirmium

UNTAET

UN Transitional Administration in East Timor

UNTSO

UN Truce Supervision Organization